341 research outputs found

    Subdecoherent Information Encoding in a Quantum-Dot Array

    Get PDF
    A potential implementation of quantum-information schemes in semiconductor nanostructures is studied. To this end, the formal theory of quantum encoding for avoiding errors is recalled and the existence of noiseless states for model systems is discussed. Based on this theoretical framework, we analyze the possibility of designing noiseless quantum codes in realistic semiconductor structures. In the specific implementation considered, information is encoded in the lowest energy sector of charge excitations of a linear array of quantum dots. The decoherence channel considered is electron-phonon coupling We show that besides the well-known phonon bottleneck, reducing single-qubit decoherence, suitable many-qubit initial preparation as well as register design may enhance the decoherence time by several orders of magnitude. This behaviour stems from the effective one-dimensional character of the phononic environment in the relevant region of physical parameters.Comment: 12 pages LaTeX, 5 postscript figures. Final version accepted by PR

    Dynamical Decoupling of Open Quantum Systems

    Get PDF
    We propose a novel dynamical method for beating decoherence and dissipation in open quantum systems. We demonstrate the possibility of filtering out the effects of unwanted (not necessarily known) system-environment interactions and show that the noise-suppression procedure can be combined with the capability of retaining control over the effective dynamical evolution of the open quantum system. Implications for quantum information processing are discussed.Comment: 4 pages, no figures; Plain ReVTeX. Final version to appear in Physical Review Letter

    Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing

    Full text link
    We propose an all-optical implementation of quantum-information processing in semiconductor quantum dots, where electron-hole excitations (excitons) serve as the computational degrees of freedom (qubits). We show that the strong dot confinement leads to an overall enhancement of Coulomb correlations and to a strong renormalization of the excitonic states, which can be exploited for performing conditional and unconditional qubit operations.Comment: 5 pages revtex, 2 encapsulated postscript figures. Accepted for publication in Phys. Rev. B (Rapid Communication

    Noiseless encoding in a quantum-dot array

    Get PDF
    A potential implementation of quantum-computation schemes in semiconductor-based structures is proposed. In particular, an array of quantum dots is shown to be an ideal quantum register for a noiseless information encoding. In addition to the suppression of phase-breaking processes in quantum dots due to the well-known phonon bottleneck, we show that a proper quantum encoding allows one to realize a decoherence-free evolution on a time scale long compared to the femtosecond scale of modern ultrafast laser technology. This result might open the way to the realization of semiconductor-based quantum processors

    The TSC Complex-mTORC1 Axis:From Lysosomes to Stress Granules and Back

    Get PDF
    The tuberous sclerosis protein complex (TSC complex) is a key integrator of metabolic signals and cellular stress. In response to nutrient shortage and stresses, the TSC complex inhibits the mechanistic target of rapamycin complex 1 (mTORC1) at the lysosomes. mTORC1 is also inhibited by stress granules (SGs), RNA-protein assemblies that dissociate mTORC1. The mechanisms of lysosome and SG recruitment of mTORC1 are well studied. In contrast, molecular details on lysosomal recruitment of the TSC complex have emerged only recently. The TSC complex subunit 1 (TSC1) binds lysosomes via phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2]. The SG assembly factors 1 and 2 (G3BP1/2) have an unexpected lysosomal function in recruiting TSC2 when SGs are absent. In addition, high density lipoprotein binding protein (HDLBP, also named Vigilin) recruits TSC2 to SGs under stress. In this mini-review, we integrate the molecular mechanisms of lysosome and SG recruitment of the TSC complex. We discuss their interplay in the context of cell proliferation and migration in cancer and in the clinical manifestations of tuberous sclerosis complex disease (TSC) and lymphangioleiomyomatosis (LAM)

    Local Optical Spectroscopy in Quantum Confined Systems: A Theoretical Description

    Get PDF
    A theoretical description of local absorption is proposed in order to investigate spectral variations on a length scale comparable with the extension of the relevant quantum states. A general formulation is derived within the density-matrix formalism including Coulomb correlation, and applied to the prototypical case of coupled quantum wires. The results show that excitonic effects may have a crucial impact on the local absorption with implications for the spatial resolution and the interpretation of near-field optical spectra.Comment: To appear in Phys. Rev. Lett. - 11 pages, 3 PostScript figures (1 figure in colors) embedded. Uses RevTex, and psfig style

    Coherent control using adaptive learning algorithms

    Full text link
    We have constructed an automated learning apparatus to control quantum systems. By directing intense shaped ultrafast laser pulses into a variety of samples and using a measurement of the system as a feedback signal, we are able to reshape the laser pulses to direct the system into a desired state. The feedback signal is the input to an adaptive learning algorithm. This algorithm programs a computer-controlled, acousto-optic modulator pulse shaper. The learning algorithm generates new shaped laser pulses based on the success of previous pulses in achieving a predetermined goal.Comment: 19 pages (including 14 figures), REVTeX 3.1, updated conten

    Theory of Fast Quantum Control of Exciton Dynamics in Semiconductor Quantum Dots

    Full text link
    Optical techniques for the quantum control of the dynamics of multiexciton states in a semiconductor quantum dot are explored in theory. Composite bichromatic phase-locked pulses are shown to reduce the time of elementary quantum operations on excitons and biexcitons by an order of magnitude or more. Analytic and numerical methods of designing the pulse sequences are investigated. Fidelity of the operation is used to gauge its quality. A modified Quantum Fourier Transform algorithm is constructed with only Rabi rotations and is shown to reduce the number of operations. Application of the designed pulses to the algorithm is tested by a numerical simulation.Comment: 11 pages,5 figure
    • …
    corecore